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A method is proposed for the calculation of the relative values of one-electron energy levels in transition metal complexes. 
Approximations to more rigorous considerations are made in terms of free-ion orbital energies and point-charge interactions. 
The effects of ligand-ligand interaction, size of basis sets, methods for electron population analysis, and parameter variations 
are evaluated. 

MO Theory for Metal Complexes 
The goal of any theoretical calculation involving 

many-atom inorganic systems is to achieve reasonable 
correlation with the experimental observables coupled 
with an improved insight into the nature of the chemical 
bonding in such systems. From a practical stand- 
point, since completely exact calculations are impossible 
a t  the present time, one turns to semiempirical methods 
for the actual computations. Ideally, such methods 
should not only predict reasonable values of the ob- 
servables but should entail approximations which are 
in accord with more rigorous approaches. 

In the past few years, the modified Wolfsberg and 
Helmholz methodlF4 has been used for the calculation 
of the electronic energy levels in transition metal com- 
plexes. As a result of previous work in this labora- 
tory,6*6 we became convinced that this method entailed 
certain assumptions concerning the estimation of the 
values of the diagonal and off-diagonal matrix ele- 
ments which were not in accord with more rigorous 
considerations. We further felt that, as an automatic 
consequence of these assumptions, the approach re- 
sulted in molecular orbitals which were frequently too 
covalent in character.6 Consequently, one would ex- 
pect poor correlation with those experimental ob- 
servables whose interpretation involved the nature 
of the molecular orbitals. For example, the modified 
Wolfsberg-Helmholz calculation on permanganate4 
indicates the e-antibonding orbital to be approximately 

(1) M. Wolfsberg and L. Helmholz, J .  Chem. Phys. ,  20,  837 (1952). 
( 2 )  H. D. Bedon, S. M. Horner, and S. Y. Tyree, Jr., Inovg. Chem., 3, 647 

(1964). 
(3) H. D. Bedon, W. E. Hatfield, S. M. Horner, and S. Y. Tyree, Jr., ibid. ,  

5 ,  743 (1965). 
(4) A. Viste and H. B. Gray, ibid., 3, 1113 (1964). 
(5) R. F. Fenske and C. C. Sweeney, ibid., 3, 1105 (1964). 
(6) R. F. Fenske, ibid., 4, 33 (1965). 

60% ligand in character, yet tl + e* transition in- 
tensity6 in Mn04- and the esr results' in Mn0d2- 
indicate that this orbital should involve no more than 
10% ligand participation. 

It is the purpose of this report to outline a semi- 
empirical approach for the transition metal complex 
systems which we believe is in better accord with theo- 
retical considerations and which shows some promise 
of leading to results in better agreement with experi- 
mental information. Application of the method to 
the relatively simple fluoride systems is carried out in 
order to define the ground rules under which the 
approach may be extended to complexes containiny 
ligands of greater complexity. 

Initial Considerations 
Accepting the fact that  a rigorous, complete, one- 

electron calculation for systems of transition metal 
complexes is not feasible a t  the present time, the choice 
of the approach to be used depends upon the degree of 
compromise between rigor and simplicity of calcula- 
tion. In this context it is worthwhile to consider the 
one-electron energies of a closed-shell system in terms of 
an LCAO-SCF calculation. 

The one-electron molecular orbitals, ?Pi, are approxi- 
mated by a linear combination of symmetry-adapted 
atomic orbitals, for example8 

*$ = aixi + bt4t 

(7) D. S. Schonland, Puoc. Roy.  Soc. (London), A154, 111 (1959). 
(8) J. W. Richardson and R. E .  Rundle, "A Theoretical Study of the 

Electronic Structure of Transition Metal Complexes," Ames Laboratory, 
Iowa State College, ISC-830, U. S. Atomic Energy Commission, Technical 
Information Service Extension, Oak Ridge, Tenn., 1956. In actual practice 
the qi frequently contain more than two terms. Since the treatment of the 
additional coefficients and functions follows the same pattern outlined here, 
this simpler case was chosen for brevity and clarity. The reader i.; referred 
to  the foregoing reference for a more complete discussion. 
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Here a and b are coefficients, x i  is a normalized metal 
function, and +* is the normalized symmetry-adapted 
combination of ligand wave functions associated with 
the n ligands 

n 

j = 1  
+ i  = c CijPij 

where p i j  is an atomic orbital on the j th  ligand. With- 
out loss of generality, we can simplify this discussion 
by assuming that all p i j  are orthonormal; i.e., j p i j .  

pikdr = aj,. Then z C i j 2  = 1. 
j 

Since the metal wave function, xi ,  is not orthogonal 
to + i j  one defines the group overlap integral 

G(xi j  +i) = S ~ i + i d ~  C C z j s ( ~ i ,  PI,) 

where S(x i ,  p i j )  is the diatomic overlap integral. 
j 

The charge distribution !Pi2 is given by 

i 

where the coefficients are such that integration of 
!Pi2 over all space is unity. Hence 

ai2 + 2atbtCCijS(xi ,  p i t )  + b i 2 C C t j 2  = 1 
i i 

It is convenient to divide this latter quantity, the 
charge density, between the metal and ligand centers. 
For this purpose, use can be made of the Mulliken 
methodg 

Ci = ai2 + a ib icCi jS (x i ,  p i j )  = fraction on the metal 

6, = E( bi2Cij2 + aibiCijS(xi, pi?)  1 = c6,, 
z i j  = bi2Cij2 + aibtCijS(X1, p i j )  = fraction on ligand j 

If one considers a rigorous SCF calculation, multi- 
center electrostatic integrals arise which are extremely 
difficulty to evaluate exactly. Consequently, use is 
made of another ;’vTullikenla approximation, namely, 
that  for the estimation of two-electron electrostatic 
interaction integrals. By this approximation 

j 

j j 

(PAPBi PCPC) [ (PAPA1 PCPC) f (PBPB PCPC) l s ( P A ,  PB)/2 

where ( P A P B ]  PCPC) = .f  PA*(^) PB (1) l / r 1 2 ~ ~ * ( 2 )  ~ ~ ( 2 1  
d r ,  and the pJs  are one-electron wave functions on 
atoms A, B, and C, and S(p.i, pB) is the overlap inte- 
gral between PA and PB. Consider an integral of the 
type 
(*{!P~I prnwlnl) = ai2(xixij ~ ~ ~ 1 ~ ~ ~ ~ 1 )  + 

2 a i b i C C i j ( ~ i ~ i j l  ~ r n ~ ~ r n l )  + bi2CCCijCik(PijPilz! PmlPm1) 
j j k  

Since we have assumed that S ( p z j ,  p i k )  equals aik ,  by the 
Mulliken approximation the last term in the equation 
above simplifies to b i 2 x C z j 2 ( p i j p i j l  p m l p m ~ ) .  Similarly 

j 

2 a i b i C C i j ( x m j i  ~ ~ 1 ~ ~ 1 )  = 
j 

aibiCCijS(xi ,  p i j )  [(xaxil ~ m l ~ m 1 )  + ( P i j P i j i  PniIPml) I 
(9) R. S. Mulliken, J .  Chenz. Phrs., 23, 1841 (1955). 
(IO) R. S. Muiliken, J .  Chim.  Phys. ,  46, 497, 676 (1949). 

Therefore 

(%*ilPrnlPrnl) = [at2 + 
azbzCCtJ’(Xi, ~ z p )  I ( ~ i ~ z l ~ r n l ~ n i J  + C [bz2CzJ2 + 

3 3 

aibtCzjS(Xt1 P Z J  l(Pz3Pz31 PrnlPLtll) 

(wJ4 PmlPml) = az(xzxzl PmlPml) + c 6 z p ( P i j P z 3 1  P d P r n l )  

which can be written as 

3 

Thus, by the Mulliken approximations, coulomb inte- 
grals involving the molecular charge distribution, qtzj 
can be greatly simplified. 

In  a long overlooked report on MO theory for transi- 
tion metal complexes, Richardson8 shows that by 
application of the Mulliken multicenter integral 
approximation to both coulomb and exchange parts of 
the Fock operator in Roothaan’s method for closed 
?hells, the one-electron operator becomes 

Z A  4- V ~ I  4- k V J  x = - l /  

3 

where --l/zA is the kinetic energy operator. 
given by 

Vhr  is 

in which (x,x,j , ( x z  lxi , and Z&r(l/rarl , indicate the 
coulomb, exchange, and nuclear attraction operators, 
respectively. V ,  is the corresponding operator for the 
electrons and nucleus of the j t h  ligand 

i 

It is pertinent to note the relationship between 
Richardson’s formulation and that given by Shulman 
and Suganoll for their ionic model calculation on 
KNiF8. In the extreme of a completely ionic species 
in which overlaps between metal and ligand wave 
functions are neglected, the ai and 6,, in VI[ and V, 
are either 1 or 0, and Richardson’s operator becomes 
identical with that of Shulman and Sugano. 

Matrix Elements of the Secular Determinant 
The Metal Diagonal Elements.-Application of the 

variation principle and the methods of group theory lead 
to the factored secular determinant: lHij - EGij /  = 0. 
The diagonal terms involving the metal wave functions, 
xi,  are given by 

Hi,  = (XilXJXJ = ( X t J - - / z A  + V h f l X i )  + (XilCVjjXi) 
.i 

If one considers the Shulman and Sugano ionic model, 
the first term is simply the orbital energy of the elec- 
tron whose wave function is xi in the free gaseous ion, 
and the second term is the electrostatic interaction of 
the electron with all of the ligand electrons and nuclei. 
Insofar as the species is not ionic, that  is, as far as there 
is participation of the metal orbitals in the bonding 
MO’s, there is a transfer of charge from the ligands to 
the central metal. This transfer of charge is reflected 

(11) R G Shulman and S Sugano, Phys Rev , 130, 517 (1963). 
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in the values of the ai in the VM operators summed 
over all of the occupied molecular orbitals. There- 
fore, in terms of the Mulliken population analysis, the 
first term in the diagonal element can be approximated 
as the orbital energy associated with the ion of that 
charge indicated by the population analysis of the calcu- 
lated MO's. Our calculational procedure then re- 
quires that the assumed starting charge on the metal 
be the same as that calculated from the Mulliken 
population analysis of the final molecular orbitals. In 
this respect the calculations are analogous to the modi- 
fied Wolfsberg and Helmholz calculations. 

Again, if one considers the purely ionic model, V, is 
the nuclear attraction and electronic repulsion of the 
anionic ligand, for example, F- in TiFe3-. However, 
insofar as charge is transferred to the metal via covalent 
bonding, the ligand electron population on the j t h  
ligand is decreased and consists of c6,,, where the 

summation is over all occupied MO's. 
Examination of the exact calculations of the electro- 

static interaction integrals by Shulman and Sugano 
indicates that  to a fair degree of approximation 

i- 1 

where i is summed over the 2s and 2p fluoride electrons 
and Q is 8, ;.e., the two 2s electrons and the six 2p 
electrons. This implies that  a point-charge approxima- 
tion for the ligand electrons is fairly reasonable,8 and 
hence, since the are not unity, the term for the metal 
diagonal element becomes 

where Z, is the nuclear charge minus the two electrons 
in the Is orbital. However zg,, - 2, is simply minus 

the charge on thejthligand as calculated by theMulliken 
population analysis. Hence, (xl( Vj/xi) = --q,(l/rjlxixi), 
where qr is the algebraic charge on ligand j .  When 
summed over all n ligands, this term is seen to 
be completely analogous to a "crystal field" potential 
where the point charge on each ligand, q j ,  is that  in 
accord with the electron population analysis.12 Thus, 
the metal diagonal term is approximated by 

i 

(XilXIXi) = 'X(Pbd + W q r )  

where e X ( q b l )  is the orbital energy of the metal electron 
in the free ion of charge q b ~ ,  and CF(q,) is the crystal 
field potential13 due to the ligand point charges, 4,. 

Ligand Diagonal Elements.-The ligand diagonal 
matrix elements are readily obtained by rearrangement 

(12) It should be noted tha t  for anionic ligands this crystal field term 
splits the 3d orbitals in the usual crystal field order, eg above tsg  for octa- 
hedral symmetry, while Shulman and Sugano's calculations11 show the re- 
verse order because of the exchange integrals arising from the v, operator, 
However, this difference is small compared to the over-all effect of the crystal 
field term on the position of metal diagonal elements relative to those of the 
ligands. 
(13) It should be remembered tha t  this latter potential must include the 

term Yoo(l/u ) in the expansion of the crystal field potential. This term, 
which can be ignored in a crystal field calculation involving only the 3d 
metal orbitals, is of primary importance in the placement of the metal energy 
levels relative to those of the ligands. 

> 

of the terms in the one-electron operator. This is 
most easily done by consideration of the interactions 
of an electron in one ligand atom and then relating 
this matrix element to the matrix element for the entire 
symmetry-adapted ligand function. Thus, for the elec- 
tron in the ith orbital on ligand atom 1, pil  

If ligand-ligand overlap is neglected, this matrix ele- 
ment equals the desired matrix element ( ' # ' a ] ~ l + I ) .  
If i t  is not neglected, suitable adjustments can be 
made by addition of terms such as (pcl(XIpzz) and 
renormalization as outlined by Viste and Gray.4 For 
simplicity of discussion of the method, we will consider 
only the situation where ligand-ligand overlap is 
neglected. 

By the same considerations as those given for the 
metal diagonal term, the ligand term becomes 

('#'?jXl'#'i) = %(qi) - @l(l/rMl'#'z'#'z) - Cqj(l/rjI'#'t'#'%) 
j = 2  

That is, it  is equal to the orbital energy of the ligand 
ion of charge q, plus the crystal field potential due to 
the central metal ion of charge q~ and the remaining 
ligands of charge 4,. 

The Off-Diagonal Elements, (c$~IXI xi) .-It will be 
convenient to consider the matrix element (pill XI x2) 
which involves the wave function of an electron on only 
one ligand atom, ~ $ 1 ,  and then relate this to the desired 
matrix element ($z\XIxi). Thus, ('#'zIX~xz) = C(PilIX1 
xz), where the constant, C, is the same coefficient 
which relates the diatomic overlap, S(pil, xJ, to the 
group overlap, (34% Xi). 

(Pt1IXIXi) 

The matrix element can be written as 

(pi11 -'/2A f ~ M ~ X C )  + 
(Pill VilXJ + 3 C(P%ll = 2  VjIXz) 

Since xz is assumed to be an eigenfunction of the 
operator, --/zA + VM, the first term becomes: (pzll 
- I /& f VM~X,) = E X ( ( q M ) S ( P &  xi). The last term in 
the expression for the matrix element involves the wave 
functions of ligand atom 1 and the central metal with 
the charge distributions on all of the other ligand 
atoms. Here we employ an approximation analogous 
to that used by Shulman and Sugano, namely, that  the 
sum of the nuclear and electron charge densities on 
these centers is considered to be a point charge equal 
to the charge on each ligand. Thus, the term becomes 
a sum of three center integrals 

Computation of the resultant three-center nuclear 
attraction integrals, (l/r,l pr1xi), is discussed in the 
Appendix. 

The middle term, (p i l l  Vllxz), in the equation for the 
matrix element requires special consideration. Be- 
cause pZl and VI are on the saqe  cegter, a point- 
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charge approximation for Vl similar to that used for 
the three-center integrals is not only unreasonable in 
principle but also gave unacceptable results in trial 
calculations. If we consider the explicit form of the 
term, we obtain 

where the sum of k is over all occupied orbitals on atom 
1. Only the last term in the above expression, which 
involves the nuclear attraction, is a point-charge inter- 
action; the coulomb and exchange interactions involve 
spread-charge distributions. At best, only those 
integrals in which p k l  is the fluoride Is orbital might be 
reasonably approximated by (l/rlj ptlxI). This ap- 
proximation, first utilized by Shulman and Sugano, 
can be expressed by the same formula given above 
but with 2 now equal to the nuclear charge minus two 
and the summation of E,, only over the orbitals con- 
sidered in the bonding. However, the problem in- 
volving the evaluation of the outer orbitals on the 
ligand remains. 

(1) the actual 
evaluation of the two-center electrostatic interaction 
integrals and (2) the approximation of the sum of these 
interactions by a point-charge integral multiplied by a 
correction factor to adjust for the diffuse character of 
the charge distribution, ~ ~ 1 ~ ~ 1 .  Calculations in which 
the integrals are evaluated exactly, method 1, are 
presently being studied in our laboratory. Method 
2, which has the advantage of an appreciable reduction 
in the number of integrals which must be calculated, 
has been used to obtain the results presented in this 
report. It involves the approximation 

Two approaches can be considered: 

(6 - 41)Ra(l/rl lPz1XJ 

In  the above expression R,( 1,'r~I p21xz) approximates 
the coulomb and exchange integrals. The term 
(+6 - ql) accounts for the electron dis t r ib~t ionl~ 
on ligand atom 1 as given by its starting charge, q1. 

Substitution of the above relationship into the ex- 
pression for (pill V I ~ ~ J  yields 

( ~ z l l  VII X J  [ R a ( 6  - 41) - Z ~ I ( ~ / ' ~ I ~ P I I X J  
The subscript, a, on R allows for a choice in reduction 
factors depending on whether pzl and xi are u- or T -  

bonding orbitals. 
Some feeling for the order of magnitude of the R 

values can be obtained from the calculations by Shul- 
man and Suganoll on KNiF3. Their integrals show 
that R, = 0.86 and R, = 0.90 for the terms in (2prlI 
VlI3du) and ( 2 ~ ~ 1 1  VllMa), respectively. In our cal- 
culations, we determine which values of R, and R, 
would yield the correct Dq value for one complex, 
TiFe3-, and then require that these same values remain 
(14) Six is used rather than seven because pii is also on atom I ,  and a n  

electron cannot interact with itself, a fact which is automatically adjusted 
for on the left-hand side of the equation by  the equivalence of the coulomb 
and exchange integrals when phi = p i i .  

fixed for all calculations involving the same ligand, 
fluoride. 

Evaluation of the Matrix Elements 
Basis Sets, Wave Functions, and Integrals.-Because 

of obvious extensions to other systems, we shall limit our 
discussion to the TiFe3- species. During the course of 
our investigations, basis sets of various sizes have been 
considered. The largest involves the 2s and 2p orbi- 
tals on fluoride and the 3d, .Is, 4p, and 4d orbitals on 
titanium. As will be seen, our final calculations sug- 
gest the use of Ti2+ wave functions. Hence, in the 
reported calculation, overlap integrals, two- and three- 
center nuclear attraction integrals, and the "crystal 
field" integrals for the diagonal elements are computed 
using those atomic orbitals of Ti2+ developed by 
Richardson.16,16 The fluoride functions are the same 
as those employed by Shulman and Sugano.ll A metal- 
fluorine distance 1.97 A and appropriate ligand-ligand 
distances from octahedral geometry were used in the 
calculation of all desired integrals. 1.97 A corre- 
sponds to that for Ti  and F in TiF3 which has been 
shown to have six fluorines octahedrally oriented about 
the titanium atom.17 The n-ave functions and group 
overlaps are given in Table I. It should be noted 
that, because of the method for obtaining the 4d wave 
function, it is not orthogonal to the 3d. Hence, an 
off-diagonal term connecting the 3d and 4d wave 
functions appears in both the G and H matrices. 
Even if the 4d wave function were orthogonal to the 
3d, a term connecting the two would still appear in the 
H matrix because the potential energy term, (3dl 

Vl14d), would not be zero. 
Z 

TABLE I 
W A V E  FUNCTIOXS A S D  OVERLAP INTEGRALS FOR TiFe3- 

Wave Functions" 
T(3d) = 0.4623+3(4.55) + 0.6910+3(1.80) 
"(4s) = -0.02231+1(21.40) f 0.07751+~(8.05) - 0.1985 X 

+3(3.64) + 1.0164+a(1.20) 

$4(1,31) 
S'(4p) = +0.07355+2(8.80) - 0.28678+3(3.31) + 1.03721 X 

Q(4d) = -0.18794+3(2.82) $. 1.0175+1(0.97) 
T(2s) = 1.02182+2(2.425) - 0.21736+2(8.700) 
" ( 2 ~ )  = 0.50258+2(3.7374) + 0.63388$2(1.3584) 

Group Overlap Integrals, R = 1.97 A 
G(3du, 2s) = 0.2506 G(4du, 2s) = 0.6674 
G(3du, 2pu) = 0.2231 G(4du, 2pu) = -0.0968 
G(3d7r, 2 p x )  = 0.2158 G(4d7r, 2p7r) = 0.6084 
G(4s, 2s) = 0.5891 S(3d, 4d) = 0.1740 
G(4s, 2pu) = 0.3276 
G(4pu, 2s) = 0.5380 
G(4pu, 2pu) = 0.2255 
G(4px, 2 p x )  = 0.3956 

a +=(a) is a normalized Slater-type orbital as defined in ref 
15 and 16. 

Orbital Energies, ex and e+.-In a crystal field 
calculation, the titanium would, of course, be Ti3+ 

(15) J. W. Richardson, W. C. Nieuwpoort, R .  R. Powell, and W. F. Ed- 

(16) J. W. Richardson, R.  R. Powell, and W. C. Nieuwpoort, ibid., 38, 

(17) S. Siegel, Acta Ciyst., 9 ,  684 (1956). 

gell, J. Chem. Phys., 36, 1057 (1962). 

796 (1963). 
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with a single d electron in the t Z S  orbital. However, 
in the present MO approach, transfer of charge from 
the fluorides via the bonding orbitals will result in a 
decrease of charge from +3. Calculations of orbital 
energies are consequently dependent upon both the 
charge on the ion and the orbital configuration. The 
calculations for a given charge were interpolated 
linearly from values obtained for integral charges. 
Values for different configurations were weighted and 
averaged to achieve the energy of the apprdpriate con- 
figuration by the same methods employed in the modi- 
fied Wolfsberg and Helmholz How- 
ever, it  should be stressed that calculated orbital 
energies, and not experimental valence state ionization 
energies, were used for the values of 6% and e+. The 
orbital energies were calculated from the usual one- 
center kinetic energy, coulomb, and exchange integrals 
in which the core electrons, Is to 3p on the metal and 
Is on the fluoride, as well as the outer orbitals, 3d, 4s) 
etc., were those appropriate to the charge on the 

The orbital energies, 
for the configurations finally used, are given in Table 11. 

and the flu0ride.l’ 

TABLE I1 
ORBITAL ENERGIES AS A FUNCTION OF CHARGE” 

Ti0 T i  * Ti2 * Ti3 + FQ F- 

3d 0 .  127b 11.534 26.272 44.272 . . . . . .  
4s 4.668 12.117 19.865 27.793 . . . . . .  
4p 3.021 9.154 16.147 25.711 . . . . . .  
4d 0.918 5.016 10.078 14.819 . . . . . .  
2s . . .  . . .  . . .  . . . 42.633 28.526 
2p . . .  . . .  . . .  . , . 19.707 4.908 

the 3d, 4s, 4p, and 4d orbitals, respectively. 
electron volts. 
given in the table. 

The configurations are 3dn, 3dnP14s1, 3d”-’4p1, 3dn-’4d1 for 
* All values are in 

The orbital energies are the negative of the values 

In principle, the preceding discussion is valid only for 
closed-shell configurations while in application we 
must frequently deal with subshells which are only 
partially occupied. To stay within the framework of 
the closed-shell system the orbital energies are calcu- 
lated by the use of Slater’s average of configuration 
method.’8 Furthermore, this is in keeping with our 
inability to assign the spins of the electrons donated 
to the metal via the bonding orbitals. 

Two- and Three-Center Integrals.-The two- and 
three-center nuclear attraction integrals, (l/rll pilxi) 
and (l/yJlptlxi)j+l, were calculated by the method of 
Shavittlg with modifications as indicated in the Appen- 
dix. The values of these integrals for pil = 2p1, X~ = 
3d, 4s, 4p are given in Table 111. 

The two-center integrals, (l/yllxtxi) and (l/& 
p21pt1), for the “crystal field” interactions are also a 
type of nuclear attraction integral but are a great deal 
easier to calculate. See, for example, Ballhausen,20 

(18) J. C. Slater, “Quantum Theory of Atomic Structure,” Vol. I, Mc- 

(19) I. Shavitt, “Methods in Computational Physics,” Vol. 2, Academic 

(20) C. J. Ballhausen, “Introduction to Ligand Field Theory,” McGraw- 

Graw-Hill Book Co., Inc., New York, N. Y., 1960, p 322. 

Press Inc., New York, N. Y., 1963, p 1. 

Hill Book Co., Inc., N.w York. N. Y., 1962, p 57. 

TABLE I11 
Two- AND THREE-CENTER NUCLEAR ATTRACTION 

INTEGRALS, (1/r<l p t 1 x . I )  
IPil ,  xi) Y1” 1 4  n Y 8  

IZS ,  4s) 5.074b 0.911 1.293 1,293 
12% 4PU) 8.383 1,444 2.047 2.047 
/ 2 s ,  3du) 3.511 0.605 0,846 3.846 
/ 2 ~ ,  4du) 8.736 1.377 1.948 1.948 

2.819 3.767 1.157 1.157 1;;:; 2:; 2.565 0.583 0.780 0.780 
2pu, 4du) -0.139 -0.037 -0.082 -0.082 
ZP,, 4Pz) 2.533 0.803 1.256 1.075 
ZP,, 3 d d  1.525 0.462 0.694 0.635 
~ P S ,  4dzr) 4.276 1.108 1.678 1.53F 
a The subscripts on the r designate the ligand location of the 

The ligand locations are numbered identically 
The values of the integrals 

P P U ,  4s) 1,762 0.721 1.312 1.012 

point charge. 
with those used by ref 20, p 154. 
are given in units of electron volts. 

keeping in mind that one must include the Yoo(l/r>) 
term in the expansion of the potential. (Values of 
these integrals are also given in Table 111.) 

Computational Methods 
Once the values of the integrals tabulated in Tables 

1-111 are obtained, the matrix elements of the secular 
determinant become functions of qat,  Re, and R, since 
q, is fixed by the relations among the charge on the 
metal, q ~ ,  the number of ligands, n, and the over-all 
charge on the complex, q; that is, pj = (q  - qM)/n. 
For chosen values of Re and R,, the computations are 
completely determined by the requirement of self- 
consistency between the starting value of q~ and that 
determined by the electron population analysis. 

In  the method for the determination of that  charge 
which will be self-consistent, one cannot arbitrarily 
choose a starting charge, carry out a computation, 
and use the new charge calculated from the population 
analysis for a second calculation. A simple example 
will illustrate why this is so. If one chooses q~ = 
-4-2.97 for the TiFe3- complex, the calculated charge 
q~ is -2.12. If it were possible to evaluate orbital 
energies for such a titanium species, the next iteration 
would put the calculated qx  at  approximately $3. 
Thus, the computations would oscillate between ex- 
tremes, and self-consistency would not be achieved. 
Rather, one starts a t  some low p ~ ,  say zero, and slowly 
increments this value until the calculated value first 
falls below the starting value. The self-consistent 
charge must then be a value between the last starting 
charge and the one preceding it. Comparison of 
these two charges with their corresponding calculated 
charge distributions allows a self-consistent value to 
be chosen by interpolation. 

Results and Discussion 
This report is concerned with an examination of 

conditions under which the approach will yield answers 
in best agreement with experiment, the sensitivity of 
the results to changes in these conditions, etc. For 
this reason, all discussions will be limited to TiFe3-. 
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Results for a series of octahedrally coordinated fluorides 
appear in the following paper. 

Pertinent to the method of calculation are such con- 
siderations as the size of the basis sets, the values of the 
R, and R, parameters, the method and scope of the 
electron population analysis, and the inclusion of 
ligand-ligand overlap. Table IV summarizes some 
of the results obtained. 

TABLE IV 
METAL CHARGES AND A VALVES ( K ,  = K, = 0.80) 

Popula- 
Compu- Basis Lig-lig tion Charge on A value,d 
tation seta overlapb analysisc metal ion ev 

1 A Yes M 1.02 4 .63  
2 A Yes ai2 1.72 4.80 
3 A S O  M 1.01 2 .73  
4 A S O  ai2 1 .52  2.88 
5 A 9 0  d" 1.75 2 .73  
6 B Yes M 1.30 9 . 7 5  
7 B Yes ai2 2.04 9 .49  
8 B N O  M 1 . 0 8  7.46 
9 B ii-0 aiz  1 .79  7.74 

10 B No d7t 1,77 7.48 
11 C Yes M 0.38 7.67  
12 C Y e s  at2 1.79  8.84 

Basis sets: h = 2p ligand; 3d, 45, 4p metal. B = 25, 211 
ligand; 3d, 4s, 4p metal. C = 2s, 2p ligand; 3d, 45,4p, 4d metal. 
b Lig-lig refers to whether or not ligand-ligand overlaps and H 
matrix elements were included. c Population analysis: M refers 
t o  regular Mulliken method; d" refers to Mulliken method only 
for the 3d interactions; for details and explanation of ai2 method, 
see text. Experimental A value = 1.98 ev. 

Ligand-Ligand Matrix Elements.-Despite the fact 
that the overlaps of 2s and 2p orbitals on adjacent 
fluorides are very small, one sees what is apparently a 
large influence on the calculated values of A when this 
interaction is included. For example, computations 
1 and 3 differ in approach only by this consideration, yet 
the A value changes by approximately 2 ev. It is 
believed that such results are entirely spurious, caused 
by the approximations of the method. The off -diagonal 
interaction term between central metal and ligand in- 
volves the two-center interaction, (pi l l  V ~ I X ~ ) ,  which is 
approximated by [-Ra(--B + q j )  - Z l ( l / r l ~ p t ~ x J ,  
where R, is chosen to yield a correspondence between 
the point-charge approximation and the spread-charge 
electrostatic interaction. An analogous term is in- 
volved in the ligand-ligand interaction, ( p i l ,  V I ,  pz2) ,  
and by the computational method the same factor, 
R,, is used. However, a correction factor between 
metal and ligand interactions a t  a distance r should not 
necessarily apply to ligand-ligand interactions involv- 
ing more contracted functions a t  a distance d 2 r .  
Indeed, the point-charge approximation should be more 
correct in this latter case; that is, R, should be larger. 
However, a larger R, would decrease the size of the off- 
diagonal interaction, decreasing its effect on A. Con- 
sequently, the use of the same R, for metal-ligand and 
ligand-ligand interactions is probably incorrect. 21 

Therefore, i t  appears preferable to ignore ligand- 

(21) A simiiar conclusion was reached by LIS in regard to the modified 
Wolfsberg and Helmholz aygroach.fl 

ligand interaction entirely unless one evaluates the two- 
center electrostatic interactions exactly. 

Size of Basis Set.-Comparisons of any three sets of 
data in Table IV in which only the sizes of the basis 
sets are changed all show the same distinct trend: 
the basis set A results in the smallest, set B in the larg- 
est, and set C in the intermediate values. Comparable 
conditions between sets A and B result in approxi- 
mately a 5-ev increase in the calculated value of 
A. This effect is analogous to that which occurs in the 
modified Wolfsberg and Helmholz method.6 In  both 
calculations, inclusion of the 2s basis functions causes 
little change in the metal or ligand character of the 
molecular orbitals or in the values of any of the energy 
levels except the highest energy levels of those in which 
the 2s participates. However, in the basis sets h and 
B, the eg level which determines A is the orbital of 
highest energy, and consequently inclusion of the 2s 
results in an incorrect result for the calculated value 
of A. 

Calculations with set C basis show what happens 
when an attempt is made to use an expanded basis set 
in order to reduce the value of A. Specifically set C 
includes the 4d atomic orbital on the metal. A slight 
reduction is A is achieved but not enough to compen- 
sate for the presence of the 2s. There is good reason 
to conclude that the minimal reduction was caused not 
because higher orbitals are ineffective but rather be- 
cause the form of the particular 4d orbitals one ob-  
tains by minimization of free-ion energies may not be 
adequate. That is, higher atomic orbitals obtained for 
the free ion may not necessarily be the most desirable 
for the molecular orbital calculations.2z~ 23  Specifi- 
cally, one notes that the a-bonding overlap of the 4d 
with the 2p is negative and quite small, while the 
T overlap is very large, because the 4d orbitals from 
the free-ion calculations are very diffuse. Preliminary 
calculations have shown that contraction of the orbital 
by increase of the orbital exponent causes a decrease in 
T overlap, together with a change in sign and increase 
in a overlap, without substantial alteration in orbital 
energy. Because of the location of the 4d level, such 
changes should have the effect of decreasing the calcu- 
lated A value. In any event, it  is clear that, if one 
uses free-ion atomic orbitals with this method, the best 
approximations to the molecular energy levels are ob- 
tained by use of the minimal set A. It should be 
stressed that, while the calculations reveal little change 
in molecular orbital character on exclusion of the 2s 
orbitals, use of set A is not meant to imply that they 
do not participate in the bonding. Rather, it  would 
appear that a single reduction factor for both types of 
u interactions tends to overestimate the role of the 2s. 
WFe are presently investigating the entire problem of 
wave function forms and basis sets in a more rigorous 
framework in order to clarify this situation. 

( 2 2 )  While there is a convenience in the use of free-ion AO's as basis f u n c ~  
tions, there is no theoretical requirement that  they be used, particiilarly f o r  
the higher energy orbitals. Indeed, as illustrated by Hartree-Fock calcuia- 
tions on hydrogen fluoride,23 there is evidence that such AO's are frequently 
not the best functions with which to construct the LCAO-XO's. 

( 2 3 )  E. Clementi, J .  Chem. Phys. ,  36, 33 (1862). 
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Electron Population Analysis.-The values in Table 
IV also allow comparison of three methods for electron 
population analysis. Those labeled M refer to the 
previously described Mulliken method in which the 
analysis includes all of the orbitals in the basis set. 
Those symbolized by d” indicate that the Mulliken 
method was applied to the 3d orbitals only. That  is, 
the ai of the 3d orbitals only were used to calculate the 
charge on the central metal with all remaining charge 
presumed to be on the ligands. In  the method labeled 
ai2 for a calculated MO of the form \ki = adxi + b&, 
the coefficents a, and b ,  were renormalized such that 
ui2 + biz = 1 prior to the summation of the ai2 of the 
occupied molecular orbitals. 

One need only examine curves of the radial functions 
of the AO’s used in the basis sets to see why such a 
study was made. Figures 1 and 2 show that, while 
the region of overlap between the 3d metal and 2p 
ligand orbitals is between the two atoms, the overlaps 
of the 2p with the other more diffuse metal orbitals 
are essentially on the ligand. Furthermore, Figure 3 
indicates that  the charge densities of the 4s and 4p 
wave functions are also primarily on the ligands. 
Consequently, if we consider coulomb interaction of 
the type F&,(4~4pI3d3d), i t  is not unreasonable to 
approximate this by 84,(l/rj13d3d), that  is, the inter- 
action of the 3d charge density with the &, charge 
density acting as a point charge on the ligand. 

From this point of view, the self-consistent charge 
takes on a clearer meaning which should be emphasized. 
It is primarily a means of control for estimation of self- 
consistency between the final coefficients, a, and bi, 
and those implied in the choice of starting charge. 
To interpret the self-consistent charge as the “true” 
ionic charge of the metal in the complex is misleading. 
Furthermore, MullikenZ4 has pointed out that  the charge 
distribution by his method is dependent upon the size 
of the basis set and that unbalanced sets on two atoms 
would automatically favor an apparent transfer of 
charge to the atom with the larger basis set. 

These considerations more than justify the use of 
only the 3d-2p interactions to distribute the charge. 
It is further affirmed by the ag2 method of analysis. 
This approach tends to assign the cross term in the 
charge density, 2aibiG, to the ligands. One notes from 
Table IV the general similarity between the charge 
via the d” and ut2 methods. This emphasizes that the 
transfer of charge to the metal in the 4s, 4p, and 4d 
MO’s in the Mulliken method comes from the uib,G 
contribution. However, as Figure 1 indicates, for 
these diffuse metal orbitals this distribution should 
really be associated with the ligand and not the metal. 

It is interesting to note that, all other considerations 
being equal, all three methods give approximately the 
same A value. However, the foregoing considerations 
suggest that  the Mulliken method involving only the 
3d orbitals is the most reasonable approach to use. 
Since this method presumes all metal electrons above 
the filled 3p shell to be in the 3d orbitals in the ground 

(24) R. S. Mulliken, J. Chem. Phys. ,  36, 3428 (1962). 

r in a.u. 
Figure 1.-Radial functions of TiFa3-, 3d metal-2p ligand. 

1 1 1 1 
I 2 3 3.88 -0.464 

r in a.u. 
Figure 2.-Radial functions of TiFe3-, 4p metal-2p ligand 

r 

[P(r 

Ti F 

rin a.u. 
Figure 3.-Charge densities of radial functions of TiF63-. P ( r )  = 

R ( r ) r .  

state, a simplification occurs in the evaluation of the 
orbital energies. One need no longer consider the 
contributions of such configurations as 3dn-%, 3dnF2sp, 
etc., to the 3d orbital energies, but only those arising 
from the 3d” configuration. Similarly the 4s, 4p, and 
4d energies come from the 3dn-%s, 3dn-I4p, 3dn-’4d 
configurations, respectively. This appreciably simpli- 
fies their calculation. 
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The Choice of R Parameters.-Under the assump- 
tion that the difference in the tzg* and e,* levels re- 
flects the A value for TiFG3-, none of the results given 
in Table IV agree well with the experimental value2j 
of 1.98 ev. Table V summarizes the results of interest 
for the calculations as a function of R, and R,. 

TABLE 5' 
RESULTS AS A FUXCTION OF REDUCTION PARAXETERS 

---Electron I- 
R, Rr Charge A 2tz,* Ze, 

0.90 0.90 2.07 1.6gb 0.904 0.887 
0.85 0.85 1.90 2.19 0.891 0.862 
0.85 0.80 1.82 1.23 0.868 0.870 
0.85 0.75 1.76 0.24 0.848 0.877 
0.80 0.80 1.77 2.73 0.878 0.840 
0.87 0.87 1.98 1.98 0.897 0.873 

)opulationsa---- 
It?, l eg  

0.096 0.113 
0.109 0.135 
0.132 0.130 
0.152 0.123 
0,122 0.160 
0.103 0.127 

a Electron population values given for that  fraction of one 
* Values of A given in electron volts. electron on the metal atom. 

Disregarding for the moment that set of values which 
yield the best estimate of A, one notes the sensitivity 
of A and the relative insensitivity of the orbital co- 
efficients and self -consistent charge to the choice of 
reduction parameters. For example, computations 
3 and 4 in Table V show a change in A of 0.20 ev for 
0.01 change in the R, value. This kind of result 
affirms that not only are the values of the off-diagonal 
term very sensitive to the value of the integral (p,ll 
Vllx,), but also the antibonding energy levels are ex- 
tremely sensitive to the value of the off-diagonal 
matrix element. This is further illustrated by com- 
parison of the t z g  secular determinants for computations 
3 and 4 of Table V. The determinants, their eigen- 
values, and the differences between the H(3d, 3d) ele- 
ments and their respective antibonding levels are given 
in Table VI. It is seen that a change of the R, scaling 
factor from 0.80 to 0.75 results in an increase of 0.87 
ev in tz,* - H(3d, 3d). This sensitivity of the anti- 
bonding levels, and consequently of the estimates of 
A,  to small variations in the off-diagonal term was first 
noted by us2 in connection with the modified Wolfsberg 
and Helmholz method. It raises serious questions as 
to the ability of any semiempirical method to reproduce 
exact A values. 

TABLE V I  
tSg SECULAR DETERMISANTS AND EIGENVALUES 

R, = 0.85  R,  = 0.80 
'11 .26  - E -4.84 - GEI Ei = - 2 . 6 0  ev E2 = 15.26 ev l -  4.84 - GB -1.24 - B 1 

-1.28 -"'* - - E 

El - H(3d, 3d) = 4.00 ev 
Rc = 0.85 R, = 0.75  

11.82 - E E1 = -2 .30  ev Br = 16.60 ev 
-5.74 - GE E z  - H ( 3 d ,  3d) = 4.87 ev 

On the other hand, one is seldom interested in A 
for its own sake. Certainly in the case of simple com- 
plexes such as hexahalides, hexaammines, etc., it is 
well known from crystal field considerations. What is 
of interest is the nature of the bonding. If calculations 

(25) Previous considerations of TiFss- suggested a A value of 2.13 ev. 
However, as will be shown in the follov,ing paper, OUT results suggest the 
lower value might be more apropos. I n  any event, the values of A in Table 
IV are all too high. 

of a theoretical nature are to have significance, it will 
be because of the insight they give us into covalency, 
the importance of T bonding, etc. This is precisely 
the information one can obtain by consideration of the 
coefficients of the atomic orbitals in the molecular 
orbitals, and these have been shomn to be relatively 
insensitive to changes in the scaling parameters. It 
is suggested, therefore, that instead of concentrating 
one's effort on the exact reproduction of A, one may 
use the experimental value as a means of fixing param- 
eters such as R, and R, and thereby correlate the re- 
sults of the calculations with other experimental data. 
This approach will be examined more fully in the 
following article. 

The foregoing discussion does not mean to imply 
that one should be free to choose R, and R, in an en- 
tirely arbitrary fashion For example, for computation 
1 of Table V, the reduction factors of R, = R, = 0.90 
resulted in an off-diagonal term for the AIg secular 
determinant of insufficient magnitude so that the co- 
efficient of the 4s orbital in the bonding wave function 
was negative and a negative population on the metal 
was calculated by the population analysis. The latter 
is physically meaningless. Furthermore, the negative 
coefficient would imply that a decrease in charge 
density between the atoms occurs on bond formation, 
z.e., the molecular orbital has the form of an anti- 
bonding orbital. In terms of the limited basis set 
employed, it is much more likely that the reduction 
factor does not adequately reflect the proper degree 
of electrostatic repulsion, and such choices should be 
discarded. 

Similarly, it  would seem that since the correction 
involves the ligand charge distribution, ~ ~ z 3 p , 3 p z 3 ,  

one could expect that reduction factors for a given 
ligand should be fairly independent of the metal ion 
or its oxidation state. That this seems to hold is 
shown in the following paper which covers a series of 
hexafluoride complexes. 

From Table V, it is seen that, when reduction factors 
of R, = R, = 0.87 are employed, the calculated value 
equals the experimental A. More complete details 
of this calculation are given in Table VII. From the 
tabulated coefficients and the ti, values, one notes the 
moderate degree of T bonding in the fluoride complex, 
a result in accord with that obtained by Shulman and 
Sugano on KNiF3. Likewise, i t  is seen that, although 
some covalency exists, the complex is essentially ionic 
as indicated by the high degree of metal character in 
the tzg* and eg* orbitals Participation in the bond- 
ing of the 4s and 4p orbitals does not appear to be 
substantial. 
In accord with experimental observations, the wide 

separation of the tzp* and e,* orbitals from the nearest 
filled pure ligand orbital, tlu, eliminates the possibility 
of observing charge-transfer transitions in the visible 
or ultraviolet region. On the other hand, transitions 
from tzg* to alg* mould appear to be energetically 
observable in TiI7EJ--. In fact, the same vibrations, 

z 
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TABLE VI11 
SUBDIVISION OF THE INTERVAL OF INTEGRATION 

orbital exponents L1 Lz 
Ratio of 

3 18 0.95 0.99 
14-18 0.95 0.98 
10-14 0.90 0 .95  
8-10 0.82 0.91 
6-8 0.78 0.88 

Level 
3tm 
2aig 
2% 
2tzg 
tu 
tzu 
2t,u 
l t z g  
lalg 
lt1u 

1 eg 

TABLE VI1 
ENERGY LEVELS AND EIGENVECTORS OF TiF8- 

Energy, 
ev 

24.92 
15.44 
15 .01  
13 ,03  

-1.37 
-1.37 
-1.62 
-2.19 
-2 .41  
-2.48 
-3.69 

c- 

3d 
. . .  
. . .  

0.990 
0.996 

0.237 

0 .27  

--Eigenvector cof 

. . .  1.113 
4s 4p 

1 ,058  . . .  
. . .  . . .  

. . .  0.102 

. . .  . . .  
0.034 . . .  
. . .  0.072 

:fficients- 
2PS 

-0.303 
-0,379 
-0,484 

. . .  

-0.182 
. . .  
0.988 
0,970 
0.905 

-- 
2P7r 

- 0,533 
. . .  
. . .  

- 0.446 
1.000 
1,000 
0.944 
0.922 

0.125 
. . .  

a< 
0,932 
0.988 
0 ,873  
0.897 
0.000 
0.000 
0.043 
0.103 
0.012 
0.025 
0.127 

ttu and tZu, make both the tzu + e@ and tZg --t alg transi- 
tions vibronically allowed. It is interesting to note 
that  there are two absorption maxima in TiF,j3-. 
While the existence of two peaks has been previously 
rationalized2 as due to Jahn-Teller distortion in the 
excited state, it  is tempting to speculate that the second 
maximum might be due, a t  least in part, to the t Z E  + 

alg transition. Additional consideration of this and 
other results are given in the following paper on the 
hexafluorides. 

Summary 
The proposed method for the calculation of electronic 

energy levels in transition metal complexes attempts to 
simplify a more rigorous SCF calculation by means of 
reasonable approximations. The use of limited free- 
ion basis sets and point-charge approximations yields 
results which are in accord with present chemical con- 
cepts concerning the bonding in such complexes. The 
results appear to be sufficiently encouraging to warrant 
further investigation of the method. 
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Appendix 

Computation of Three-Center 
Nuclear Attraction Integrals 

Shavittls has indicated the usefulness of the Laplace 
transform in the evaluation of multicenter integrals 
involving Slater orbitals 

x,(Y) = [(2a)zE+1/(2n> !1’/~rn-1e-a~ 

Application of this method to the computation of three- 
center nuclear attraction integrals,ze (+Al rC- l j~B) ,  

can be facilitated by the following considerations. 
Both nuclear attraction and hybrid integrals require 

modified Bessel functions of the second kind of integral 
order, while eq 119-135 of ref 19 presume half-integral 
order. By rearranging terms in the series for J,, 
(eq 115) one can show, in the notation of Shavittlg 

l - - n - l / z  

TI,= c SZZ(U, .) + 5 R d u ,  7-1 
Z = 1  ,=O 

(26) Note tha t  it is the implicit assumption of Shavitt tha t  the + Z  axis 
a t  center A points away from center B,  this is opposite to the convention 
in the overlap formulas of R Mulliken, C. Rieke, D. Orloff, and H Orloff, 
J .  Chem. Phys . ,  17, 1248 (1949). 

where I is half an odd integer, with 

and 

With these definitions of R and S the recursion rela- 
tions follow readily; in particular, eq 131 of ref 19 
becomes 

To avoid the time-consuming generationz7 of the 
Bessel functions KiJ when i is integral, use can be 
made of a very accurate analytic approximation28 to 
KO and K1. The maximum error in this approximation 
is about 1 part in lo7, much less than the error intro- 
duced by the numerical quadrature. 

Accurate evaluation of the integrals is strongly 
dependent upon the location of the one-dimensional 
numerical integration points in the interval (0, 1). 
For certain integrals the integrand behaves erratically 
near the limits, and subdivision of the interval is 
necessary. Since it is desirable that the quadrature 
be automatic, a study has been made to determine a 
suitable criterion and method for the subdivision. 
While i t  is true that for large x the Bessel functions 
K,(x) in the series go as e-z(7r/2x)i/2 for all i, it  is not 
possible to use x alone as an indication of the size of 
the integrand since the series is infinite. However, 
it  has been determined that, when the ratio QA/CYB is 
large, the only significant contribution to the integrand 
comes from a very narrow maximum located near the 
limit 1. When this ratio is very small, s milar be- 
havior is exhibited near zero. When ‘/e < CYA/CYB < G ,  
the integrand is reasonably uniform over the entire 
interval. Consequently, the ratio of the a values is 
indicative of the behavior of the integrand and is a 
useful criterion for placing more points in the interval 
where the integrand i s  largest and most erratic. 

When use is made of the best available atomic func- 
tions,16,16 one deals with ratios of orbital exponents of 
20: 1 or less. Our calculations indicate that, for such 
functions, use of 16 Gauss-Legendre points, with the 
interval properly subdivided, 29  yields values accurate to 
1 part in lo6 or au, whichever is the less stringent. 

(27) I. Stegun and M. Abramowitz, “Mathematical Tables and Other 

(28) E Allen, ref 27, Vol. X, 1956, p 162. 
(29) Without subdivision, errors for a given pair of Slate1 functions can be 

Aids to  Computation,” Vol. XI, 1957, p 255. 

as great as 50%. 
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When 20 3 CYA/CYB 3 6, the points are allocated in CYB 3 no subdivision is necessary. For 20 3 
groups of 3,  5 ,  and 8 in the intervals (0, L1), (L1, Lz), a a / a ~  3 6, the 3, 5 ,  and 8 points are placed in the 
(Lz, l), respectively, where the L values for the appro- intervals (1 - La, l), (1 - La, 1 - LJ, and (0, 1 - 
priate ratio are given in Table VIII. For 6 3 CY*/ Lz), respectively. 
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Energy Levels, Spin Densities, 
and the Nephelauxetic Effect i n  Metal Hexafluorides 
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The relative electronic energy levels of MFe3-, where M = Ti, V, Cr, Fe, and Co, are calculated from semiempirical molecular 
orbital theory. The molecular orbitals iudicatc 
less covalent character than previous calculations. Spin density estimates from the 2p orbitals are in good accord with re- 
sults from nmr and epr measurements. Comparison of calculated and experimental B and p values shows excellent agree- 
ment and allows an interpretation of the nephelauxetic effect to  be made. 

The calculated A = 1ODq values compare well with experimental results. 

Introduction 
In the preceding paper,l a method was outlined for 

the calculation of the relative energy levels of transition 
metal complexes. This report concerns the applica- 
tion of the procedure to the series MFe3-, where &I = 
Ti, V, Cr, Fe, and Co. Since full details have already 
been given, we shall simply summarize the pertinent 
restrictions. 

The calculations are fully specified by the wave 
functions, internuclear distances, and choice of reduc- 
tion parameters, R, and R,. The basis set for the 
metal consisted of the + 2  wave functions for the 3d, 
4s, and 4p orbitals as tabulated by Richardson and co- 
workers. 2,  The fluoride 2p radial function is the same 
as that used by Shulman and Sugano4 in their work on 
KNiF3. With the exception of CrF63- where the 
internuclear distance is known5 the internuclear dis- 
tances between the metals and the fluorines were ob- 
tained from the tabulation given by Peacock6 for the 
neutral compounds MF,. In  each case, octahedral 
symmetry of fluorines about the metal is evident. In  
accord with the calculations1 on Tips3-, reduction pa- 
rameters of R, = R, = 0.87 were employed in the 
approximation of the two-center interactions for the 
off-diagonal terms of the secular determinant. 

Calculated Energy Levels 
The relative values of the energy levels, the self- 

consistent charges, and the calculated and experimental 
A = lODp values for the five complexes are summarized 

(1) R. F. Fenske, K. G. Caulton, D. D. Radtke, and C. C. Sweeney, 
Inoug. Chem., 6 ,  951 (1966). 

(2) J. W. Richardson, W. C. Nieuwpoort, R. R. Powell, and W. F. Edgell, 
J .  Chem. Phys., 36, 10157 (1962). 

(3) J. W. Richardson, R. R. Powell, and W. C. Nieuwpoort, ibid., 38, 796 
(1963). 

(4) R. G. Shulman and S. Sugano, Phys. Rev., 130, 517 (1963). 
(5) K. Knox and D. W. Mitchell, J .  Ino ip .  Nucl. Chem., 21, 253 (1961). 
(6) R. D. Peacock, Pvogj,. Inovg. Chem., 2, 193 (1960). 

in Table I. For each system, the levels through tl, 
are completely filled. The occupation of the 2tZg and 
2eg levels is then specified by the number of d electrons 
on the metal distributed in accord with the "weak 
field" nature of the complexes. It should be noted 
that the level values are relative positions and that the 
positive values of the 2t2g and higher levels result 
because the potential of the cations was not included 
in the calculations. 

In  view of the sensitivity of calculated A values to 
small variations in reduction parameters, the degree 
of agreement between calculated and experimental 
results is quite gratifying. As has been shown,l 
minor adjustment of the reduction parameters would 
have resulted in exact agreement of A values with little 
change in the eigenvector coefficients ; these results 
show that approximate A values can be obtained 
without such adjustment. 

The values of the energy levels suggest that charge- 
transfer transitions from the nonbonding tzu state 
should not be observable in the visible or ultraviolet 
regions except in the case of CoFs3- where the one- 
electron energy difference 2tZg - t z u  is 5.20 ev. Of 
course, this latter quantity does not account for possible 
electrostatic interaction changes as a result of the 
charge transfer. Unfortunately, the experimental ab- 
sorption spectrum for this species' is not reported 
above 20,000 wavenumbers (2.45 ev) so a comparison 
is not presently possible. 

It is also noteworthy that for the titanium complex 
the transition 2tZg --f 2a1, is expected to appear a t  2.41 
ev. Since the same vibrations, tl, and t Z u ,  which make 
the 2t2, + 2eg transitions vibronically allowed also 
make 2t2g -+ 2al, possible, one is tempted to speculate 
that the higher energy absorption maximum in TiFG". 
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